From Turing instability to fractals
نویسندگان
چکیده
A generic criterion for the generation of spontaneous fractal patterns is proposed, which has independence with respect to system nonlinearity. We also report the first transverse spatial optical fractals found in dispersive and absorptive ring cavities, and our analysis is fully confirmed by numerical simulations. © 2007 Optical Society of America OCIS codes: (190.4400) Nonlinear Optics, Materials; (190.9540) Nonlinear Optics, Self-Action Effects.
منابع مشابه
SPOT PATTERNS IN GRAY SCOTT MODEL WITH APPLICATION TO EPIDEMIC CONTROL
In this work, we analyse a pair of two-dimensional coupled reaction-diusion equations known as the Gray-Scott model, in which spot patterns have been observed. We focus on stationary patterns, and begin by deriving the asymptotic scaling of the parameters and variables necessary for the analysis of these patterns. A complete bifurcation study of these solutions is presented. The main mathematic...
متن کاملSPATIOTEMPORAL DYNAMIC OF TOXIN PRODUCING PHYTOPLANKTON (TPP)-ZOOPLANKTON INTERACTION
The present paper deals with a toxin producing phytoplankton (TPP)-zooplankton interaction in spatial environment in thecontext of phytoplankton bloom. In the absence of diffusion the stability of the given system in terms of co-existence and hopf bifurcation has been discussed. After that TPP-zooplankton interaction is considered in spatiotemporal domain by assuming self diffusion in both popu...
متن کامل6 A pr 2 01 2 Stochastic Turing Patterns on a Network
The process of stochastic Turing instability on a network is discussed for a specific case study, the stochastic Brusselator model. The system is shown to spontaneously differentiate into activator-rich and activator-poor nodes, outside the region of parameters classically deputed to the deterministic Turing instability. This phenomenon, as revealed by direct stochastic simulations, is explaine...
متن کاملPotential Turing instability and application to plant-insect models
We show in this paper that the analysis of diffusion-induced instability in spatially extended models can be performed by separating local dynamics from diffusion. This is possible not only in the case studied by Turing, namely models with two interacting variables, but also in the general case of three or more variables. The advantage of this decomposition, based on the notion of potential Tur...
متن کاملTuring Instability and Pattern Formation in a Semi-discrete Brusselator Model
In this paper, a semi-discrete Brusselator system is considered. The Turing instability theory analysis will be given for the model, then Turing instability conditions can be deduced combining linearization method and inner product technique. A series of numerical simulations of the system are performed in the Turing instability region, various patterns such as square, labyrinthine, spotlike pa...
متن کامل